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SIGNIFICANCE AND EXPLANATION

Unfortunately the usual definition of a resonant state, expressed in

terms of the subsequent exponential decay, is not consistent with other

necessary facts in the foundations of quantum theory, when most physical cases

are considered. From the mathematical point of view the resonance space must

be empty, which apparently is a poor physical result. The formal implications

of this difficulty have been known for a long time.

Regardless of the improvement, made possible on the basis of measurement

theory, this paper will be aiming at a redefinition, which maintains the plain

conservative conception of the resonant state: It is supposed to constitute a

unique, well defined initial condition for the time development of the

physical system. If the description of the system is sufficiently complete

under this condition, it motivates the use of strongly continuous semi-groups

of contraction operators for the time development )
. In its generality the

time development implies here the solution of the Schroedinger equation and

the relevance to natural laws is therefore affirmed as well.

5I T N

1)

Using Hadmard's criteria for a "well set" initial value problem (71 it was
Phillips (81, who first used the initial state concept of mathematical physics
to motivate the theory of semi-groups.

The responsibility for the wording and views expressed in this descriptive

summary lies with MRC, and not with the author of this report.
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ABSTRACT

As a conbequence of the formal difficulties in explaining resonances as

solutions of the general Schroedinger equation, the procedure developed here

exploits some fairly general properties of a semigroup, appropriate for the

decay. A feature, which in this context may be named as "the paradox of

resonance", will be analyzed to some extent. By generalizing the time

development one can, however, formulate the resonant state in a consistent

way. Its definition will be interpreted along the lines of strictly singular

perturbations.
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RESONANCE THROUGH A STRICTLY SINGULAR PERTURBATION

IKetill Ingolfsson*

1. Introduction.

When resonance is explained in the mathematical foundations of quantum theory, one

usually presumes the observance of an eigenstate of a bound wave packet. The corresponding

energy is in this case disclosed by the static central physical field. At first sight one

would assume the existence of a state, in which no continuous spectrum is observed. In the

very beginning of radiation theory, however, it was clearly explained 11] that this kind of

energy does not exist and a resonant state is by observation never left alone by itself.

The objectives of the theory were perturbed states and the determination of unperturbed

states was highly ambiguous. Therefore it became customary to utilize in one way or the

other the exponential time dependence of the decay, an experimentally very well established

behaviour, in order to define the resonant state in the formal language of quantum physics.

The definition of the resonant state was, however, always considered as inconsistent.

Already the pioneers of damping theory used to defend their results, although physically

convincing [2), by assuming that the resonant development was in one way or the other a

good approximation of the physical case. The investigation of the formal structure of

deviations from the exponential decay brought until now detailed results [31, but has never

contributed to a better understanding of the natural law. In order to answer the question,

if formal resonance is relevant to natural laws, some authors have recently shown explicit

calculations, which from a randomly repeated measurement allow a consistent redefinition of

a resonant state

Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland.
1)
See Ali, Fonda, Ghrirardi (41 and Fonda [5] for a review of the physical literture and

Piron (63 on a recent mathematical analysis of the problem.

Sponsored by the United States Army under Contract No. DAAG2g-80-C-0041.
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These results will not be used directly for the form of resonance as it is presented

in the following. The resonant decay may be interpreted as a suitable perturbation of a

state, generated by a general wave equation with a self adjoint operator, with respect to

which the subspace of absolute continuity is nonvanishinq. According to a theorem of Weyl-

von Neumann (9] there exists a perturbing term, self adjoint on a subspace and with

sufficiently small Schmidt norm, such that the perturbed operator has a pure singular

spectrum in the resonant subspace. By considering two strongly continuous one-parameter

semi-groups of contraction operators one can present a pair of infinitesimal

transformations generating asymptotically related semi-groups. The impossibility of

interpreting in s great number of physical cases the resonant state from a natural

exponential law, valid for all values of t on the nonnegative time-axis, will be referred

to as the "paradox of resonance"l}. The observance of this paradox shows that the

perturbation series developed for the exponential decay can not be analytic in the coupling

of the operators, when the corresponding perturbed states are defined in any neighborhood

of t - 0. This fact can be confirmed by using a strictly singular perturbation of the

operator2 ) . Some technical problems of strictly singular perturbations series were already

solved by the author in an earlier paper (12]. This approach may also be used for Gelf'and

triples and intermediate spaces, as they are explained by Huet [13].

2. The paradox of resonance.

To start with one can use the following most general approach to the time

development: A time dependent state is in quantum theory expressed in terms of a one-

parameter unitary group. If is a vector in the abstract Hilbert space and represents

the state at some given instant, the physical situation can be explained t units of time

later by the vector

1)
The formal objections to this interpretation of the resonant state were discussed in

Parry Simon's lecture at the 1978 SANIBEL meeting [01.
2)
we are here quoting Seymour Goldberq's denotation of strictly compact cases [11].

-2-
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(1 ) exp(-it) .

According to a fundamental theorem of Stone [141 this vector is differentiable in the

strong sense, if and only if it is of the domain of the infinitesimal generator of the

group. The vector *t is therefore considered as the solution of the qeneralized

Schroedinqer equation with the initial condition * *, when D £ V(H).

The following attempts to define the resonant state are based on the use of

exponential behaviour of the decay, when it is generally described by the time development

(1) with the self adjoint operator R defined in the general Hilbert space. A simple,

widespread attempt is to use the

Definition 0 (fault): The vector p with I* Y I = 1 represents a resonant state of

the width y with respect to H, when the inequality

(2) YlT, exp(-iHt)* 1 
2 

< exp(-Yt)

is fulfilled for all positive values of t. B The definition is not consistent with all

terms entering this formulation. This is best seen by introducing for any *y £ D(H) with

Y I - I a real, even, time dependent function

(3) Ft = (Y, exp(-iit)* nY2

A function of this kind is continuously differentiable in any interval around o. For

t - o the value of Ft  is I and the value of its derivative with respect to t is o.

For enough small positive values of t one could find a contradiction to the statement (2)

for any positive value of y ("short time complaint"1 )).

1)
The notations "short time - " and the following "long time complaints" are quoted from

Simon's lecture, loc.cit. [101.

-3-



One might try to circumnavigate this inconsistency by using the Ft as it is

explained in (3) in more general terms as those expressed by the requirement (2). This

leads to the

Definition 00 (fault): The vector , Y, which is a member of the subspace of

singularity with respect to the self adjoint operator H. represents a resonant state, if

the singular spectrum is not dense on the entire real line and the inequality

(4) Ft I k exp(-qt)

is for any g fulfilled for some k, when t is large enough. M The formulation of this

definition must be rejected because of the following inconsistency ("long time complaint"):

The inner product (* y, exp(-iHt)* y) is the Fourier transform of a measure, which

according to the Palsy-Wiener theorem is at least analytic in a strip of the width g

around the real line. On the other hand is the resolvent set P(H ) connected and there

exists an open interval on the real line, on which the measure is zero. Therefore the

measure is everywhere zero, the function Ft is identically zero in t and 07 - O. YI
The explanation of the above inconsistency follows a similar description of the

problem by Simon. In his "definition", however, semiboundedness is presupposed for the

self adjoint operator H. In a recent paper of Ira Herbst [15] a physical case (the Stark

effect) is discussed, In which the spectrum is absolutely continuous and covers the entire

real line. In this case the "long time complaint" of Simon does not take effect, because

H is not semibounded. The objection to the Definition 00, as it was explained before, can

not be used either, because the subspace of singularity with respect to H is empty. The

question one now tries to answer is, if there exists a modification of the former

definition, for which an operator with the above described performance of the Herbst

operator is applicable.

-4-



Definition 000 (fault): If the absolutely continuous spectrum of H, defined in a

separable Hilbert space, is not empty and a bounded reduction of the operator exists, which

defined onto an invariant subspace has a finite Schmidt norm, then is the vector * y of

this separable Hilbert space a resonant state with respect to H, when the inequality (4)

is fulfilled for any g < y, some positive k and t large enough.9 One can show the

impossibility of the inequality (4) in this definition, when t is large enough, through

the following argumentation: Let H = XdE(X) be the spectral representation of H

and P - E(a) - E(b) for some b < a the projection onto a subspace, which reduces H to

a bounded operator with a finite Schmidt norm, IPHI 2 . If the Hilbert space is separable,

one can find (uk}, a dense subset in the orthogonal complement to the above subspace.

For each of these uk there is a finite dimensional orthogonal projection, Pk'

and a self adjoint operator Yk with a finite Schmidt norm such that 1(1 - Pk)Ukl < E,

|Yk|2 < c and Pk(H + yk) c (H + Y h}P, for any c (Lemma of von Neumann, loc.cit. 91).

The following, slightly modified version of the Weyl- von Neumann perturbation theorem is

the consequence of the lemma in the above situation:

Theorem 1: Let H be a self adjoint operator in a separable Hilbert space with a

nonvanishing absolutely continuous subspace with respect to H and let a bounded reduction

of this H be of the Schmidt class. For any c > o exist the numbers a and b with

b < a and a self adjoint operator A with the Schmidt norm less than e such that H + A

has a pure point spectrum, which vanishes within (b,a).

The assumptions presupposed here imply that the absolutely continuous spectrum cannot

cover R entirely. In a subspace determined by the projection operator

1 - E(a) + E(b) is A the operator, which in the Weyl- von Neumann theorem is stated as

the Perturbation of the energy operator to a spectrally singular operator. On the subspace

determined by E(a) - E(b) one can, however, take A as -H. The self adjoint perturbed

operator H 4 A is then pure singular and has not spectrum within (b,a). In accordance

with Ft by (3) one can now define



5 F-1 exp(-i(H+A)t) )I 2

From the discussion of Definition O0 it is obvious that F' can not fulfill an inequality

like (4), when t is large enough. Let H' in the following mean H + A. By means of

the Phillips equation
1 )

(6) 1J , exp(-iHt)* ) = 1( , exp(-iH't)* ) + (exp(iH't) ,

ft ds exp(iH's)(iA)exp(-iHs)*)

one can find the relation

(7) F' + F 1/2 t, + F /2 /2 rt -2
t t t t tt - t~t

2

with At = , exp(iHt)exp(-iH't)$ )I and {V t , V'} both real and bounded by the

number

/c1I-Ft)(1-A t ) < t 1A1 2
t t2

If we claim that the inequality (4) is now true for Ft. the number IAI2  can be chosen so

small that the solution of (7) with respect to F' fulfills the inequality (4). As this

is, however, not possible according to Theorem 1, the Definition 000 must be inconsistent.

The description of the inconsistencies in the Definitions 0, 00 and 000 has shown that

the inequality (4) must not be used for the definition of the resonant state, if one of the

following is true: The energy operator is semi-bounded, its resolvent set is connected or

there exists an absolutely continuous spectrum although some reduction of the energy

operator on the nonvanishing singular subspace has a finite Schmidt norm. There remains

1)
The name "Phillips equation" was suqaested to the author by B. Simon.

~-6-
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the possibility of an absolutely continuous spectrum not fulfilling the above requirement

for the Schmidt norm and a singular spectrum everywhere dense on the complement to the

absolutely continuous spectrum with respect to the real line. It would obviously be

useful, if some definition of the resonant state could be developed, which was applicable

to more than these rare cases.

3. The resonant state.

In accordance with generalizations of Stone's theorem, which were originated in the

semi-group theory of Hills and Yosida1 ) , the time development (I) can be replaced by a more

general form. Let {Z(t),t > 0} be a strongly continuous one-parameter semi-group of

contraction operators defined on the general Hilbert space and G the infinitesimal

generator of the semi-group. The time development of a vector, *(t), which, analogous to

(1), shows, how the state evolves from *, when t > 0, is now determined by the

expression

(8) *(t) - Z(t)*

Similar to Ft, as it was defined by (3), one can then introduce a nonnegative form,

F(t), by

(9) F(t) =
2

and include this form in relations demonstrating the mode of the decay. From here on the

operator G generates a semi-group, C(y), which by means of the expression (8) implies a

decay effect for p(t), characterized by the line breadth y. This is generally the

consequence on the following

1)

The theory, which Hille and Yosida proved independent of each other, is explained in
Yosida's monograph [16].
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Definition 1: A semi-group, {Z(t)ht > 01, is named a "decay group by the line

breadth y", denoted by t(y), when the adjoint of the infinitesimal generator G is

defined on an extension of the domain of G and when an operator, fl, exists, fulfilling

the following properties:

1) The numerical range of 9 is not the whole complex plane.

2) The domain of 0 is an extension of the domain of G and the closure of a is

defined in the domain of a

3) There exists a proper subspace, H2 , of the general Hilbert space, which reduces a

such that H1, the nonvanishing orthogonal complement to H2, is the closure of the

nullspace of r, which is here defined as G - Q, and the nullepace of G1 , which is

the closure of the symmetric part of G - r.

4) The operator r is closable with the closure c*W, where W is a partial isometry in

the general Hilbert space mapping H2 onto H, and c c

5) If the closure of the skew symmetric part of G is denoted by GO, then is

(10) (r + G I)G c G 0( + G

6) If z e t with Imz # 0 and T - iG0 , then is def(T-z) - def(T-z).
Imz>0 Imz<0

7) The closure of the symmetric part of Q has the negative eigenvalue - with H as
2 H2 a

the corresponding eiqenspace. U

This definition replaces the various attempts of section 2 to define a resonant

state. It must be shown that the properties claimed under the definition imply a

consistent structure. It is also important to know, which of its relevant terms are

unique, when they exist. Because it is a infinitesimal generator, the operator G is

closed and densely defined. An operator having these properties always fulfills the

following: i) The adjoint of the operator is densely defined. ii) The adjoint of the

adjoint is the original operator. Because D(T+ ) p(G+ ) :,D(G) one can use the

decomposition



11) G = F + /2 (G - r + G+ 
-r

+ ) 
+ 1/2 (G - r - G + r

)

of the infinitesimal generator, where the second term on the right is symmetric and the

third term skew symmetric. The terms are not necessarily closed, because the reduction

of G+ onto D(G) is not always closed. The closures, G, and G0, of these terms are

again not necessarily self adjoint and skew self adjoint. If not, the property 6) will

secure that they have self adjoint and skew self adjoint extensions [17].

From the property 1) follows that 0 is closable [18]. Any symmetric and skew

symmetric extensions of the corresponding terms in (11) are on the forms 1/2(Q + jl+) and

/2 ( - Q+) respectively, if and only if S also fulfills the property+

D(Q) n D(Q+0 D D(G). Their closures are therefore extensions of the operators G I and

G0 . The operator G., which in this context corresponds to -iH in the previous section,

is bounded, if the numerical range of S if bounded, and semibounded, if the numerical

range of 0 is bounded in the upper or the lower half-planes. The property 1) is

therefore a proper generalization of the semi-boundedness, as it occured in the discussion

on Definition 00 in the previous section. The operators 1/2 (, + a') and 1/2( - 12) are

essentially self adjoint and skew self adjoint, if V(Q) = V(P+). The closures,

/2 ( + ) and 1/2 (Q - Q
+
) are then self adjoint and skew self adjoint. If conversely

the closures of the expressions 1/2 (0 + 0+) or 1/2 ( - Q+) are self adjoint or skew self

adjoint respectively and the property 2) is fulfilled, then is (Q) = V(Q+) ). One can

therefore conclude from the property 7) that 1/2( + 0
+
) and 1/2(Q - 0+) are self adjoint

and skew self adjoint extensions of G I and Go with the doma* n V(SI). The operator 7

is, when it exists, uniquely determined, because it is defined on the same domain as G.

Being the nullspace of F the subspace H 1 is therefore uniquely determined. The closed

and densely defined operators r + G, and the self adjoint extension of Gn fulfill the

conditions for heing infinitesimal qenerators of contraction semi-groups. (The condition

1)

This follws from the followinq: If an operator, A, is rlnsed and densely lefined in a
separable Hfilbert space, A is a closed extension of A and A+ 

=  
, then is A = A.

' i I I Il ' -. ..



concerning the bounds of both resolvents [161 is fulfilled through the symsetry and skew

symmetry.) The semi-groups, which they generate, will be denoted by {Z (t)l t > 0) and
0

[Z1 ( > 0) respectively. The operators {Z0 t) are, when reduced by the subspaces

HI and H2, unitary on these spaces for any positive value of t" . The state vector (1)

is a special case of the time development by (8), when H2 vanishes and the skew symmetric

part of 0 is skew self adjoint. In the following we will, however, consider

H2 as a non empty space and H, a proper subspace of the general Hilbert space. The

resonant state may now be defined by the

Definition 2: If G is the infinitesimal generator of a decay group, C(y), in

accordance with Definition 1, the vector y is a resonant state with respect to the line

breadth y when 0 r D(G). U If H2 is not empty, C H2 n V(G) and Z(t) e C(y),

we can compute *(t) by using the properties implied by the Definition 1. This shows that

(12) t) = exp(- - t)Zo(t),P + (1-exp(- - t)) Z t2 C W2c

From this equation follows that F(t) < exp(- yt) for all nonnegative t. Using the semi-

group properties one can show that this inequality is true, if *Y . Z(s)*J2 with s some

positive number and *2 c H2  0(G) being different from 0. It would, however, be

possible, on the same reasons as the objection to Definition 0, to prove that F(t) is

larger than exp(- yt) for *Y c HI n D(G0 ) and t small enough. The generalization of

the inequality (2) is therefore not possible for all nonnegative values of t and any

* c 0(G). Using the linearity of the semigroups one can, however, show that the

generalization of the ine,,uality (4),

F(t) < k exp(-gt)

1)
This follows from a theorem characterizing the generators of isometric semi-groups, which

is a simole generalization of Stone's theorem on unitary groups [12].
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is fulfilled for any t large enough. For the derivation of this inequality we have also

used the fact that the ranges of the unitary (Z 0t)} are contained in the domain of G.

This result may be interpreted in the following way in terms of the concepts discussed

in the previous section: If the self adjoint extension of iG0, considered above, is the

operator entering the Schroedinger equation for a spontaneous decay, when described in the

Hilbert space H,, one can extend the space and assume the existence of H2, a subspace

orthogonal to HI . F(t) with tP I D(G) n HI is even still fulfilling the above

inequality, when t is large enough. The only difference to the situation in the previous

section is then that the time development can be written as a linear combination of terms

as (8) in the general Hilbert space, and * Y c V(G) may be a restriction to the choice of

the initial state.

4. The perturbation series. When one now has arrived at a suitable definition of the

resonant state, how can it be used in a practical case? In a previous paper [121 the

author discussed a series,

n-1
(13) Z(t)0 I A (t) 0 + Rn(t) 0

0

where the terms A (t)4 are determined by the recurrence relations

A (t)4( = -iuOlt)f d. UOls)
+ 
V A (S) V > 1

A (t) = U°(tC)

and the remainder term R (t)J obeys for n > i a similar relation with R0 (t) beingn=

2(t). Then is

(14) R n(t)lb An(t)4 + R n+1(t) ,

-11-



and for n - 0 this is just the Phillips equation (6), when we take the inner product by

*. The series converges asymptotically according to the estimate

(15) IRn(t)1 < t M sup (oR n( $ + 1H0Rn(s)%),
s<t

if V is HR-strictly singular and * C D(G). In this series is iH° the generator of

the unitary group (U0 (t)}.

Let us now look back to our original problem, the spontaneous decay. We may find a

self adjoint operator (the self adjoint extension of -iG0  on D(G)) in some Hilbert

space (i.e. H,). We have constructed a larger space and a partial isometry between the

spaces (i.e. the operator W). There exists a decay group in the large space, which on the

smaller space is unitary. The decay can be described as an asymptotically converging

series according to (13) and (15). The remainder term R1 (t), achieved by applying an

iteration of (14) in as many terms as one likes, is the deviation from the exponential

decay. The reduction D(G) , H1 represents the resonant subspace.

When the physicists claim, as they have been doing the last 15 years, that the

deviations from the exponential decay have no meaning for the description of nature, they

are in fact right. The above formulation might tell why. The deviation is originated in

an extension of the physical space and therefore not relevant to the physical law. This

conclusion is independent on the way the series (13) converges. We have, however, chosen

by G a general possibility to conceive the remainder term, which fulfills the purpose of

asymptotic series.

-12-
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